Volume 24 Number 3 January 30, 1985 # **Inorganic Chemistry** © Copyright 1985 by the American Chemical Society # Articles Contribution from the Pacific Northwest Laboratory, Richland, Washington 99352 ### Neptunium(IV) Hydrous Oxide Solubility under Reducing and Carbonate Conditions DHANPAT RAI* and JACK L. RYAN Received March 20, 1984 Solubility of Np(IV) hydrous oxide was approached from the oversaturation direction in the presence of reducing agents (Na₂S₂O₄, metallic Fe, metallic Zn) with and without 0.01 M total carbonate and in the range pH 6-14.2. In all of the above solutions in this range contacting Np(IV) hydrous oxide, Np concentrations were at or below the detection limit for Np (~10^{-8.3} M). No evidence was found for any amphoteric behavior of Np(IV). Although it was not possible to determine absolute hydrolysis constant or carbonate complexation constant values for Np(IV) from these experiments, the results do set an upper limit of $\log \beta_5^* < -24.7$ for Np⁴⁺ + 5H₂O \rightleftharpoons Np(OH)₅⁻ + 5H⁺ and of $\log \beta_n$ (Np⁴⁺ + nCO₃²⁻ \rightleftharpoons Np(CO₃)_n⁴⁻²ⁿ) <22.5, <27.9, <33.2, <38.5, and <41.6 for $\beta_1 - \beta_5$, respectively. The results provide no evidence for such reactions, but if they are assumed to occur, these upper limits are many orders of magnitude lower than previously reported. #### Introduction Under reducing conditions such as those that might be present at some of the proposed radioactive waste disposal sites, actinides, especially uranium and neptunium, will be present in the tetravalent state. Therefore, solubility data for tetravalent actinide compounds are needed to determine the potential hazards of disposing of actinide-containing wastes in geologic repositories. Predictions about the solubility of different actinide compounds have recently been reported by several authors.1-7 These predictions, for the most part, are based on thermodynamic data that are selected from unreliable and questionable experimental values and/or are in most cases estimated on the basis of techniques of uncertain validity. For example, the second, third, and fourth U(IV) hydrolysis constants have been estimated by assuming linear arithmetic progression among the logarithms of the equilibrium constants⁸ from questionable experimental data⁹ for the fifth hydrolysis constant. These data in turn have been applied to other actinides as well. However, Ryan and Rai¹⁰ conducted careful experiments but found no evidence for the existence of the fifth U(IV) hydrolysis species, thereby casting serious doubt on the accuracy of values of the second, third, and fourth hydrolysis constants as well. of Pu(IV) hydrous oxide as a function of carbonate concentration at pH 11.5. As was pointed out several years ago by one of the present authors to another¹² who was reviewing the entire field of plutonium chemistry, this value is much too high to be believable. Despite this and apparently because the Moskvin and Gelman¹¹ value was the only available experimental value until recently, several authors^{2,13,14} who reviewed actinide thermodynamic data in the past have chosen to include this value (or a somewhat revised value based on the Moskvin and Gelman¹¹ data) in their calculations without critical comment as to its validity. This value for the Pu(IV) carbonate complex has been assumed to apply to other tetravalent actinides as well. Recently, Kim et al. 15 reported values for all of the formation constants of the Pu(IV) carbonate complexes PuCO₃²⁺ through Pu(CO₃)₅⁶⁻. Their value of $\beta_1 = 1.3 \times 10^{47}$ is slightly higher than even the Moskvin and Gelman¹¹ value. There are a variety of reasons for completely rejecting such carbonate formation constant values; four are discussed briefly. First, the formation constant for complexes between hard-acid metals and hard-base ligands having a constant ligand atom (in this case oxygen) can be semiquantitatively related Moskvin and Gelman¹¹ studied Pu(IV) carbonate complexes in concentrated (0.36-3.6 M) carbonate solution, concluded that only the PuCO₃²⁺ complex was present, and reported its formation constant value as $\beta_1 = K_1 = 9.1 \times 10^{46}$ on the basis of the solubility to ligand basicity (as measured by acid association constant) and metal ion charge density. On this basis and by comparison of ⁽¹⁾ Allard, B.; Kipatsi, H. K.; Liljenzin, J. O. J. Inorg. Nucl. Chem. 1980, ⁽²⁾ Lemire, R. J.; Tremaine, P. R. J. Chem. Eng. Data 1980, 25, 361. ⁽³⁾ Rai, D.; Serne, R. J. J. Environ. Qual. 1977, 6, 89. (4) Ogard, A. E.; Duffy, C. J. Nucl. Chem. Waste Manage. 1981, 2, 169. ⁽⁵⁾ Allard, B. "Actinides in Perspective"; Edelstein, N., Ed.; Pergamon Press: Oxford, 1982, pp 553-580. (6) Rai, D.; Serne, R. J. "Solid Phases and Solution Species of Different Elements in Geologic Environments", Report PNL-2651; Pacific Northwest Laboratory: Richland, WA, 1978. Langmuir, D. Geochem. Cosmochim. Acta 1978, 42, 547 Baes, C. F.; Mesmer, R. E. "The Hydrolysis of Cations"; Wiley: New York, 1976 Gayer, K. M.; Leider, H. Can. J. Chem. 1957, 35, 5. ⁽¹⁰⁾ Ryan, J. L.; Rai, D. Polyhedron 1983, 2, 947. Moskvin, A. I.; Gelman, A. D. Russ. J. Inorg. Chem. (Engl. Transl.) 1958, 3, 1898. Cleveland, J. M. "The Chemistry of Plutonium"; Gordon and Breach: ⁽¹²⁾ Cleveland, J. Mr. The Chemistry of Plutonium; Gordon and Breach: New York, 1970; p 120. (13) Keller, C. "The Chemistry of the Transuranium Elements"; Verlag Chemie GmbH: Weinheim, Germany, 1971; pp 198-199, 415. (14) Phillips, S. L. "Hydrolysis and Formation Constants at 25 °C", Report LBL-14313; Lawrence Berkeley Laboratory: Berkeley, CA, 1982. Kim, J. I.; Lierse, C. H.; Baumgartner, F. ACS Symp. Ser. 1983, No. 216, 318. $$PuO_2 \cdot xH_2O + CO_2 + 2H^+ \rightleftharpoons PuCO_3^{2+} + (x+1)H_2O$$ (1) It can be seen from the pH dependence of this reaction, if the PuCO₃²⁺ species had a sufficiently large formation constant to allow an even measurable concentration of such an ion in the solutions studied by Moskvin and Gelman, 11 namely pH 11.5 and 0.36-3.6 M CO₃²⁻ solutions having equilibrium CO₂ pressures less than that of air, it would be the principal species present in strong acid solutions (such as >1 M HClO₄) in equilibrium with the CO₂ content of air. Because such carbonate complexes are not observed, the conclusions of Moskvin and Gelman¹¹ and Kim et al.¹⁵ are most certainly incorrect. Equations similar to eq 1 can be extended to higher carbonate complexes (and to other metals with highly insoluble hydroxides or hydrous oxides) to show that only anionic complexes can contribute to any appreciable extent to solubility in carbonate or bicarbonate solutions. Since, in the case of tetravalent actinides, anionic complexes involve at least three carbonates, solubilities can be expected to drop rapidly with decrease in carbonate concentration below those known to occur in >1 M carbonate-bicarbonate solutions. Fourth, the measured Pu(IV) concentration¹⁸ in equilibrium with Pu(IV) hydrous oxide at pH 8 in equilibrium with air is definitely $< 10^{-10}$ M, whereas the value predicted from the results of Kim et al. 15 or Moskvin and Gelman,11 using the hydrous oxide solubility product of Rai,19 is approximately 4×10^8 M. The Np(IV)-ammonium carbonate system has been studied²⁰ by a solubility method at pH values of 8.6-8.8 and up to 2.2 M (NH₄)₂CO₃. It was concluded that the single species Np-(OH)₄CO₃²⁻ was formed with a formation constant from the Np⁴⁺ ion of 1.20×10^{53} . Unfortunately, the method used to calculate this constant was completely erroneous. Errors included subtraction of a large constant value from all the measured solubilities in order to make this fit a first-power carbonate dependence, assumption that total carbonate plus bicarbonate is entirely carbonate at pH values where bicarbonate predominates and the carbonate to bicarbonate ratio is pH dependent, and provision of no evidence that the assumed "Np(OH)₄·xH₂O" was the equilibrium solid phase in these Np(IV)-saturated concentrated ammonium carbonate solutions, whereas three different ammonium tetravalent actinide (An) carbonate salts, (NH₄)₂An(CO₃)₃·xH₂O, $(NH_4)_4An(CO_3)_4\cdot xH_2O$, and $(NH_4)_6An(CO_3)_5\cdot xH_2O$, have been reported21 to have been isolated from ammonium carbonate solutions. Correction of the first two of these errors indicates that the reported solubilities actually show somewhat less than a half-power dependence on carbonate. In addition, the single absorption spectrum presented²⁰ would appear to indicate an appreciable fraction of Np(VI), or an impurity with a similar absorption spectrum. If, as assumed, 20 Np(IV) hydrous oxide is the solid phase and Np(OH)₄CO₃²⁻ is the solution species, the Np(IV) solubility in these strong carbonate solutions would be pH independent above about 11.5 where carbonate dominates but would decrease markedly below this pH as carbonate converts to bicarbonate. This is the opposite of what was found for Pu(IV) by the same author, 11 and also his Pu(IV) solubilities 11 were much less at pH 11.5 than were the Np(IV) solubilities²⁰ at pH 8.6-8.8 for the same range of total carbonate levels. We have also observed a greater solubility of U(IV) in bicarbonate than in carbonate solutions. On these bases, the conclusions of ref 20 appear to be without merit. Although our recent experimental results (unpublished results of Rai, Swanson, and Ryan; estimates from Strickert and Rai²²) put the logarithm of the solubility product of Np(IV) hydrous oxide at about -53.5, the data for (1) Np(IV) hydrolysis constants, (2) redox boundary between Np(IV) and Np(V), and (3) Np(IV) carbonate complexes are not available. These data are needed to determine Np concentrations in equilibrium with Np(IV) compounds under waste disposal site pH, E_h , and carbonate concentrations. Therefore, this study was undertaken to determine the solubility of Np(IV) hydrous oxide under reducing conditions, a range in pH values, and carbonate concentration as high as might be expected under waste site conditions. #### **Experimental Section** Reagents. Neptunium-237 was purified by anion exchange in nitric acid,²³ was essentially free (<34 ppm ²³⁹Pu and ~2 ppm ²⁴⁰Pu) of other α -emitting elements or isotopes, and contained <100 ppm other metallic impurities. The anion-exchange product was thermally evaporated to incipient denitration, with conversion to Np(VI). The residue was diluted about 10-fold with 12 M HCl and was again taken to incipient solidification, and this step was repeated five or six more times to thoroughly remove nitrates. The final solution was taken up in 6 M HCl. H₂O₂ (30%) was added to the solution to the point of precipitation of large amounts of Np(IV) peroxide, but thermal decomposition of the H₂O₂ produced about 15% reoxidation to Np(V) with the remainder Np(IV). The solution was then reduced to a mixture of Np(IV) and Np(III) in the cathode compartment of a partitioned electrolytic cell using a Ptgauze cathode and graphite anode. The Np(III) reverted rapidly to Np(IV) in the presence of air. Np(IV) remained stable in the 1.35 M Np-6 M HCl stock solution. Deionized water was deaerated by boiling and thorough sparging at room temperature with an inert gas (>99.99% N₂ or Ar with only a few parts per million oxygen). Two different NaOH stock solutions (10.5 and 1.93 M) were prepared in an inert atmosphere from a new bottle of reagent grade pellets of NaOH. The 10.5 M NaOH solution was found to contain 0.0152 M carbonate¹⁰ and was treated with a 7.5% excess of BaCl₂ to reduce carbonate through BaCO₃ precipitation. This solution was kept in a closed container in an inert atmosphere for several weeks before use. The 1.93 M NaOH solution, freshly prepared at the time of the experiments, was used only in experiments involving the effects of carbonate on the solubility of Np(IV) hydrous oxide. Because the precise E_h boundary, as a function of pH, between Np-(IV) and Np(V) is not known and because appropriate redox agents to study this boundary have also not been tested, several redox agents were tested for their efficiency in maintaining Np in the reduced state. These redox agents included Na₂S₂O₄, Fe, Ni, Pb, and Zn. Na₂S₂O₄ was obtained from Sigma Chemical, and an alkaline 1 M stock solution was prepared under N₂ immediately before use. Iron (powder, 325 mesh), Ni (powder, grade 1), and Pb (powder, 200 mesh) were from Alfa Products, and Zn (dust) was from the Scientific Supply Co. General Procedures. All experiments were conducted in a glovebox with a prepurified N_2 (99.99% with a few ppm oxygen) atmosphere. Basic solutions of 0.05 M Na₂S₂O₄ in glass centrifuge tubes were spiked with 0.03 mL of Np(IV) stock solution containing approximately 10 mg of Np, taking care that the solutions never became acidic. Solution ⁽¹⁶⁾ Sillen, L. G.; Martell, A. E. "Stability Constants of Metal-Ion Complexes" The Chemical Society: London, 1964. Cotton, F. A.; Wilkinson, G. W. "Advanced Inorganic Chemistry", 3rd ed.; Wiley Interscience: New York, 1972; pp 451, 650-652. Rai, D.; Serne, R. J.; Moore, D. A. Soil. Sci. Soc. Am. J. 1980, 44, 490. ⁽¹⁹⁾ Rai, D. Radiochim. Acta 1984, 35, 97. Moskvin, A. I. Soviet Radiochem. (Engl. Transl.) 1971, 13, 694 Brown, D. "Comprehensive Inorganic Chemistry"; Bailar, J. C., Emeléus, H. J., Nyholm, R., Trotman-Dickensen, A. F., Eds.; Pergamon Press: New York, 1973; Vol. 5, pp 280-282. ⁽²²⁾ Strickert, R. G.; Rai, D.; Fulton, D. W. ACS Symp. Ser. 1984, No. 246, ⁽²³⁾ Ryan, J. L. "Concentration and Final Purification of Neptunium by Anion Exchange" Report HW-59193 REV; Hanford Laboratories: Richland, WA, 1959. Table I. Equilibrium Constants and Standard Reduction Potentials for Different Redox Agents²⁶ | reaction | log K | E°, V | |--------------------------------------------------------------------|--------|--------| | $2SO_3^{2-} + 2H_2O + 2e^- \rightleftharpoons S_2O_4^{2-} + 4OH^-$ | -37.86 | -1.12 | | Γe ²⁺ + 2e ⁻ ≠ Fe | -13.82 | -0.409 | | $Zn^{2+} + 2e^{-} \rightleftharpoons Zn$ | -25.79 | -0.763 | | $Pb^{2+} + 2e^{-} \rightleftharpoons Pb$ | -4.25 | -0.126 | | $Ni^{2+} + 2e^{-} \rightleftharpoons Ni$ | -7.77 | -0.23 | volumes were adjusted to 40 mL, and pH values were adjusted to cover a range of pH 8-12.5 with perchloric acid or the carbonate-free NaOH stock solution. A 40-mL portion of 0.105, 0.42, 0.63, 0.84, 1.05, 1.55, and 2.10 M NaOH (carbonate free) containing 0.05 M Na₂S₂O₄ was also each spiked with 0.03 mL of Np(IV) stock solution. The precipitation of Np(IV) hydrous oxide and neutralization of excess acid consumed only 0.004 M, which is about 4% of the lowest hydroxide concentration used. Samples were sealed immediately after preparation and shaken until analyzed. For experiments using metal reductants, 0.03-mL portions of Np(IV) stock solution were added to glass centrifuge tubes containing 40 mL of deaerated deionized water and 0.1 g of Fe, Ni, Pb, or Zn powders. The pH values of these suspensions were adjusted to cover a range of 2.5-8.5, and they were equilibrated as discussed above. For the carbonate studies, samples containing 0.05 M Na₂S₂O₄ or 2.5 mg of Fe/mL and 0.01 M NaHCO₃ were adjusted to a range in pH values with HCl or freshly prepared NaOH stock solution (1.93 M) and were equilibrated as discussed above. Measurements. Redox potentials were measured with a platinum electrode calibrated against quinhydrone buffers. The pH was measured to within 0.025 unit with a combination-glass electrode calibrated against pH buffers covering the range of pH values in the experiments. Because of the inadequacy of centrifugation alone, ¹⁸ Amicon type F-25 Centriflo membrane cones (Amicon Corp., Lexington, MA) with effective 25 000 molecular weight cutoffs and approximately 18-Å pore sizes were used to effectively separate solids from solutions. Pretreatment steps, as suggested by Rai, 19 consisted of (1) washing and equilibrating the filters with deionized waters adjusted to the pH values of the given samples to avoid precipitation or dissolution of the solid phase due to change in the pH during filtration, and (2) passing a small aliquot of the sample through the filters (this filtrate was discarded) to saturate any possible adsorption sites on the filters and filtration containers. Oxidation state analyses of the Np stock solution were by spectrophotometry and of dilute Np solutions were by solvent extraction techniques. Neptunium(IV) concentrations were determined from 0.5 M TTA in xylene extractions from nearly equal volumes of filtered solutions containing ~1 M HCl from which only monomeric Np(IV) extracts.24 The total and solvent-extracted Np concentrations were determined by liquid scintillation α counting using Packard Insta-Gel and a Beckman (Model LS-9800) counter. The minimum detectable counts and thus the detection limits were determined by eq 2 from Curie, 25 where T is the counting time in minutes and R_B is the background rate (background divided by counting time in minutes). minimum detectable count rate = $2.71/T + 4.65(R_B/T)^{1/2}$ (2) #### Results and Discussion The thermodynamic equilibrium constants and standard equilibrium potentials of redox agents (Na₂S₂O₄, Zn, Fe, Ni, and Pb in order of increasing potential) used in this study are shown in Table I. Because these redox agents (1) are not redox buffers, (2) have not been previously tested as to whether they are kinetically active and appropriate for the Np system, and (3) have not been previously tested for their pH range of applicability, the measured redox values may not have any meaning in the thermodynamic sense. The intention in this study was to maintain low redox potential, not necessarily a fixed potential, where higher oxidation states of Np are not the dominant species in solution or at least are below our measurement detection limit. Under oxidizing conditions comparable to air, Np(V) is the dominant solution oxidation state and the solubility will decrease by a factor Figure 1. Redox potentials, measured with a platinum electrode, of Np(IV) hydrous oxide suspensions containing different redox agents after about 8 days of equilibration. of 10 with each unit decrease in pe (negative logarithm of the electron activity) as noted in eq 3. The solubility in terms of $$NpO_2 \cdot H_2O \rightleftharpoons NpO_2^+ + xH_2O + e^-$$ (3) Np(IV) is independent of pe as shown in eq 4. As pe decreases $$NpO_2 \cdot xH_2O \rightleftharpoons Np^{4+} + 4OH^- + (x-2)H_2O$$ (4) (more reducing) further, the dominant solution oxidation state will become Np(III) whose concentration increases by a factor of 10 per unit decrease in PE as shown in eq 5. From the $$NpO_2 \cdot xH_2O + e^- \rightleftharpoons Np^{3+} + 4OH^- + (x-2)H_2O$$ (5) logarithm of the solubility product of NpO2·xH2O of -53.5 (unpublished data of Rai, Swanson, and Ryan) and accepted Np(III)-Np(IV) and Np(IV)-Np(V) redox potentials, it is easily shown that above pH 3 in the absence of hydrolysis Np(IV) would never be the dominant solution oxidation state at any value of pe. At all pH values, the minimum solubilities of NpO2·xH2O as a function of pe will occur when the concentration of Np(IV) species is at a maximum relative to Np(III) and Np(V) species. Where this occurs will depend on all the hydrolysis constants for the three oxidation states. In any case, regardless of pe, the measured solubility will be an upper limit for Np(IV) because its concentration is pe independent. The measured redox potentials of many of the equilibration solutions containing various reducing agents are shown in Figure 1. The values show that Na₂S₂O₄, Fe, and Zn in general maintained redox potentials close to the boundary at which water is reduced to produce H₂. Lead and nickel did not maintain such low potentials, and measured solubilities in these solutions were well above the detection liming $(10^{-4.4}-10^{-7.5} \text{ M})$. Oxidation state analyses of these solutions by TTA extraction indicated that essentially all the Np was in oxidized form, either Np(V) or Np(VI), in all samples. No further attempt was made to interpret these results. The Np concentrations in the presence of Na₂S₂O₄ are reported in Table II. The results indicate that Np concentrations at pH values >7.7 are below are near the detection limit of Np $(10^{-8.3}$ M). Although the original samples were adjusted to obtain a large range (pH 8-14.2) and separation in pH among samples, the pH values of those initially at or below pH 11.0 dropped and were found to be between pH 6.99 and 7.11. Since oxidation of S₂O₄²consumes hydroxide (Table I), it is felt that this pH decrease in the initially low hydroxide samples is due to oxidation by residual O₂ present in the solutions or from the glovebox atmosphere. The further disproportionation of S₂O₄²⁻ under acidic conditions producing a variety of products such as sulfur and thiosulfate is known to be rapid, 17 and this also lowers pH. Thus, the reducing power of S₂O₄²⁻ would be affected. The samples with pH values of <7.2 on an average contained Np 1.5 orders of magnitude higher than the detection limit (10-8.3 M). Despite our low measured potentials, we believe this is a result of ineffectiveness of $S_2O_4^{2-}$ at the lower pH values either because of the complexing ability of its disproportionation products or because of the effect Poskanzer, A. M.; Foreman, B. M. J. Inorg. Nucl. Chem. 1961, 16, 323. Curie, L. A. Anal. Chem. 1968, 40, 586. Weast, W. J. "Handbook of Chemistry and Physics"; The Chemical Rubber Co.: Cleveland, OH, 1972. ⁽²⁷⁾ Hamer, W. J.; Wu, Y. C. J. Phys. Chem. Ref. Data 1972, 1, 1047. Table II. Measured Np(IV) Hydrous Oxide Solubilities at a 9- to 12-Day Contact Time in 0.05 M Na₂S₂O₄ Solutions Adjusted to Different pH Values with NaOH |
 | | | | | |---------|-----------------|-----------------|-------------|--| |
no. | pH ^a | PE ^b | log [Np, M] | | | 600 | 6.99 | -6.69 | -6.46 | | | 601 | 7.05 | -6.63 | -6.98 | | | 602 | 7.12 | -6.63 | -6.67 | | | 603 | 6.95 | -6.57 | -6.47 | | | 604 | 7.11 | -6.66 | -6.81 | | | 605 | 7.10 | -6.69 | -6.89 | | | 606 | 7.71 | -6.71 | -8.02 | | | 607 | 11.24 | -6.84 | <-8.29 | | | 608 | 12.36 | -6.79 | <-8.29 | | | 609 | 12.46 | -6.66 | <-8.29 | | | 610 | 12.91 | -6.59 | <-8.29 | | | 611 | 13.19 | ND | <-8.29 | | | 612 | 13.46 | ND | <-8.29 | | | 613 | 13.63 | ND | <-8.29 | | | 614 | 13.75 | ND | <-8.29 | | | 615 | 13.85 | ND | -8.26 | | | 616 | 14.03 | ND | -8.06 | | | 617 | 14.18 | -8.16 | -7.92 | | | | | | | | ^a The starting pH values of sample no. 600-607 were adjusted to 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, and 11.5, respectively. Samples no. 610-617 contained 0.015, 0.21, 0.42, 0.63, 0.84, 1.05, 1.55, and 2.10 M NaOH, respectively. The pH values of these samples were calculated from the NaOH concentrations and mean ionic activities reported by Hamer and Wu.²⁷ b ND = not determined. Figure 2. Measured apparent solubilities of Np(IV) hydrous oxide in different redox agents (detection limit for Np $\sim 10^{-8.3}$ – $10^{-8.4}$ M). Solid lines represent predicted solubilities from currently available thermodynamic data with log $K_{\rm sp}=-53.5$ from unpublished data of Rai, Swanson, and Ryan and the values of hydrolysis constants (Np⁴⁺ + nH₂O \rightleftharpoons Np(OH)_n⁴⁻ⁿ + nH⁺) of Np(OH)_n⁰ (log β_4 * = 9.9) and of Np(OH)_n⁻ (log β_5 * = -17) from Allard et al. on its reducing ability. This conclusion is supported by the solubility results using iron or zinc as reductants, where in the range pH 6-7.5 all samples were found to be below the detection limit of $10^{-8.3}$ M Np. Because of the pH dependence of the dithionite-sulfite couple (Table I), both iron and zinc should be stronger reducing agents than dithionite in this pH region and the oxidation products, Fe(II) and Zn(II), should be adequately soluble to not add a complication in their use. The solubilities, using $Na_2S_2O_4$ in the higher pH region and Fe and Zn in the lower pH region, plotted in Figure 2 show that under reducing condition and pH values >6 the Np concentrations in solutions contacting Np(IV) hydrous oxide (approached from oversaturation direction) are near or below the detection limit for Np of $10^{-8.3}$ M. The experimental results are compared in Figure 2 with values based on thermodynamic predictions using the logarithm of the solubility product value of -53.5 (unpublished data of Rai, Swanson, and Ryan) for eq 4 and the estimated hydrolysis constant data reported by Allard et al. The experi- Figure 3. Measured solubility of Np(IV) hydrous oxide in the presence of 0.01 M total carbonate and Fe and Na₂S₂O₄ as reductants (detection limit for Np $\sim 10^{-8.2}$ – $10^{-8.4}$ M). Using log $K_{\rm sp}=-53.5$ for Np(IV) hydrous oxide from unpublished data of Rai, Swanson, and Ryan and (1) assuming values of log β_1 for Pu(IV) carbonate complex¹⁵ apply to Np, the calculated activity of NpCO₃²⁺ is represented by the solid lind and (2) assuming log β_1 of Np(IV) carbonate to be lower than log β_1 of Pu(IV) carbonate by the same ratio that the logarithm of the association constant, log (1/ $K_{\rm sp}$), of Np(IV) hydrous oxide is lower than that of Pu(IV) hydrous oxide, the calculated activity of NpCO₃²⁺ is given by the dashed line. The activities of higher carbonate complexes, and thus the total Np(IV) hydrous oxide solubility, would be several orders of magnitude higher than that of NpCO₃²⁺ on the basis of the published¹⁵ values of β_2 – β_5 . mental results show no evidence for amphoteric behavior of Np(IV) and thus the existence of Np(OH)₅⁻, consistent with our earlier results on U(IV),¹⁰ which is in sharp contrast to predictions based on estimated thermodynamic data. If it is assumed that the Np(OH)₅⁻ species exists at all, the log β_5^* value of the fifth hydrolysis constant (eq 6) must be <-24.7 as compared with -17 $$Np^{4+} + 5H_2O \rightleftharpoons Np(OH)_5^- + 5H^+$$ (6) estimated by Allard et al.¹ Because the reported values of the second, third, and fourth hydrolysis constants were estimated by interpolation between the first and fifth constants, they must also be considered incorrect even if the interpolation method⁸ is considered valid. The effect of 0.01 M total carbonate on the Np(IV) hydrous oxide solubility in the appropriate pH range and in the presence of Na₂S₂O₄ and Fe as reductants was studied (Figure 3). The results show that the Np concentrations are near or below the detection limit, as is the case in the absence of carbonate, indicating no measureable effect of 0.01 M total carbonate on the solubility of Np(IV) hydrous oxide. The thermodynamic data for Pu(IV) carbonate complexes reported by Kim et al.¹⁵ if assumed to apply to the adjacent actinide Np, indicates that Np(IV) hydrous oxide should have been very soluble. Although we cannot calculate from our data the value for the Np carbonate complexes, our experimental results show that the values for the carbonate complexes reported by Kim et al.¹⁵ are very much in error. On the basis of our data, the values for log β_1 through log β_5 (eq 7) must be <22.5, $$Np^{4+} + nCO_3^{2-} \rightleftharpoons Np(CO_3)_n^{4-2n}$$ (7) <27.9, <33.2, <38.5, and <41.6, respectively; whereas, the corresponding $\log \beta_1$ through $\log \beta_5$ for Pu(IV) carbonate complexes reported by Kim et al.¹⁵ are 47.1, 55.0, 57.9, 59.6, and 62.4, respectively. These calculations show that the $\log \beta_n$ values reported in the literature are >18 orders of magnitude too high. The actual values for the carbonate complexes are expected to be several orders of magnitude lower than the limits calculated from our data. Although it is not possible to determine either absolute hydrolysis constant or carbonate complexation constant values for Np(IV) from these results, several significant conclusions can be drawn: (1) Solubility of Np(IV) hydrous oxide under reducing conditions can be used to set upper limits on solubility-controlled concentrations of Np, and these concentrations are below the maximum permissible concentrations in uncontrolled discharge.²⁸ (2) Most carbonate ground waters (<0.01 M total carbonate) will not significantly increase the Np(IV) hydrous oxide solubility (28) "Standards for Protection Against Radiation", Report 10 CFR 20; U.S. Nuclear Regulatory Commission: Washington, DC, 1979. above the maximum permissible concentrations. (3) Contrary to predictions based on thermodynamic data reported in the literature, no evidence was found for amphoteric behavior of Np(IV). (4) The values of tetravalent actinide carbonate complexes reported in the literature are grossly in error. Acknowledgment. This research was conducted for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. We thank Margaret McCulloch for analytical assistance. Registry No. Np, 7439-99-8; NpO₂, 12035-79-9; Na₂S₂O₄, 7775-14-6. Contribution from the Chemistry Departments, Ben-Gurion University of the Negev, and Nuclear Research Centre Negev, Beer-Sheva, Israel ## Stabilization of the Monovalent Nickel Complex with 1,4,8,11-Tetraazacyclotetradecane in Aqueous Solutions by N- and C-Methylation. An Electrochemical and Pulse Radiolysis Study NUSRALLAH JUBRAN,1a GREGORY GINZBURG,1a,b HAIM COHEN,*1c YAACOV KORESH,1c and DAN MEYERSTEIN*1a,c Received August 11, 1983 The divalent nickel complexes with 1,4,8,11-tetraazacyclotetradecane (L₁), 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (L₂), meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L₃), and 1,4,5,7,7,8,11,12,14,14-decamethyl-1,4,8,11tetraazacyclotetradecane (L_4) were reduced by reactions with e_{aq} and CO_2 and by electrochemical reactions in aqueous solutions. The redox potentials of the NiL_i^{2+}/NiL_i^+ couples are -1.58, -1.15, -1.42, and -0.98 V vs. SCE for i = 1, 2, 3, and 4, respectively. The UV absorption bands of NiL_i^+ are attributed to CTTS transitions. The kinetics of reduction of $Co(NH_3)_6^{3+}$, $Ru(NH_3)_6^{3+}$, O_2 , and O_2 0 by O_2 1 Ni C_1 2 are reported and discussed. The self-exchange rates of reaction between O_2 1 and O_2 2 were calculated by using the Marcus cross relation. The EPR spectra of NiL_2^+ and NiL_4^+ are reported. The complexation of NiL_i^{2+} by OHwas studied. The results are discussed in detail. NiL_2^+ and NiL_4^+ are suggested as new, powerful, easily attainable singleelectron-reducing agents that can be used over a wide pH range in aqueous solutions. #### Introduction We have recently observed that the reduction of the planar isomer of (C-meso-1,4,5,7,7,8,11,12,14,14-decamethyl-1,4,8,11tetraazacyclotetradecane)nickel(II), NiL₄²⁺, yields the corresponding monovalent complex, which is surprisingly stable in aqueous solutions.² The kinetic stability of NiL₄⁺ in comparison to that of NiL_3^+ , $L_3 = C$ -meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, was attributed to two main factors; (a) The ligand loss reaction $$NiL^+ + 2H_3O^+_{aq} \rightarrow Ni^+_{aq} + LH_2^{2+}$$ (1) is hindered or at least considerably slowed down by N-methylation. (b) The two-electron reduction of water $$NiL^+ + 2H^+ \rightarrow NiL^{3+} + H_2$$ (2) is endothermic for $L = L_4$ whereas it is exothermic for $L = L_3$. The differences in the redox potentials of NiL_4^{2+} and NiL_3^{2+} were attributed to the more hydrophobic nature of NiL_4^{2+} in comparison with that of NiL₃²⁺ and/or to the fact that the nickel-nitrogen bond length is larger in NiL₄²⁺.² Due to the interest in the effect of macrocyclic ligands on the redox properties of transition-metal complexes in general and nickel complexes specifically, 4-9 we decided to extend these studies. In this report we analyze the effect of nitrogen and carbon methylation of (1,4,8,11-tetraazacyclotetradecane)nickel(II), NiL₁²⁺, on the redox couple NiL^{2+}/NiL^+ by comparing the chemical properties of NiL_1^+ , NiL_2^+ , NiL_3^+ , and NiL_4^+ ($L_2 = 1,4,8,11$ tetramethyl-1,4,8,11-tetraazacyclotetradecane). In addition to the electrochemical properties and specific rates of redox reactions studied by pulse radiolysis also the visible spectra of NiL²⁺ and pK values for the reaction $$NiL^{2+} + OH^- \rightleftharpoons NiL(OH)^+$$ (3) are reported. The last two properties are used as indicators for the ligand field strength and for steric hindrance along the z axis in the four complexes studied. #### **Experimental Section** Materials. The complexes NiL1(ClO4)2 and NiL3(ClO4)2 were prepared from the free ligands and Ni(CH3CO2)2 as earlier described.9 NiL₂(ClO₄)₂ and NiL₄(ClO₄)₂ were prepared by N-methylation of NiL₁(ClO₄)₂ and NiL₃(ClO₄)₂, respectively, with use of the method described by Barefield et al., ¹⁰ i.e. deprotonation by solid KOH and methylation by CH₃I in Me₂SO. The IR spectra of NiL₂(ClO₄)₂ and NiL₄(ClO₄)₂ in KBr pellets showed no bands due to N-H stretching, and the proton NMR spectra of these complexes were identical with those reported in the literature. 10 All other materials were of AR grade and were used without further treatment. All solutions were prepared with use of heat-distilled water that was then passed through a Millipore setup, the final resistance being >10 M Ω . Electrochemical Measurements. A three-electrode cell was used. Working electrodes were a dropping mercury electrode (DME) for polarograms, the Metrohm E 410 hanging-mercury-drop electrode ^{(1) (}a) Ben-Gurion University of the Negev. (b) Deceased, Aug 5th 1981. (c) Nuclear Research Centre Negev. ⁽²⁾ Jubran, N.; Ginzburg, G.; Cohen, H.; Meyerstein, D. J. Chem. Soc., V vs. SCE.⁴ As NiL₃(H₂O)₂³⁺/has a p K_a at 3.7,⁵ E^o is even lower in neutral solutions. We were unable to oxidize NiL₄²⁺ even by Br₂-2 Furthermore, the data in this work suggest that $E^{\circ}_{NiL_4^{3+}/NiL_4^{2+}} >$ E°NiL₃³⁺/NiL₁²⁺. (4) Zeigerson, E.; Ginzburg, G.; Kirsehenbaum, L. J.; Meyerstein, D. J. Electroanal Chem. Interfacial Electrochem. 1981, 127, 113. Cohen, H.; Kirschenbaum, L. J.; Zeigerson, E.; Jaacobi, M.; Fuchs, E.; Ginzburg, G.; Meyerstein, D. Inorg. Chem. 1979, 18, 2763. Lovecchio, F. V.; Gore, E. S.; Busch, D. H. J. Am. Chem. Soc. 1974. ^{96, 3109.} Busch, D. H.; Pillsbury, D. G.; Lovecchio, F. V.; Tait, A. M.; Hung, Y.; Jackels, S.; Rakowski, M. C.; Schammel, W. P.; Martin, L. Y. ACS Symp. Ser. 1977, No. 38, 32. Haines, R. I.; McAuley, A. Coord. Chem. Rev. 1981, 39, 77. Zeigerson, E.; Bar, I.; Bernstein, J.; Kirschenbaum, L. J.; Meyerstein, D. Inorg. Chem. 1982, 21, 73. Wagner, F.; Barefield, E. K. Inorg. Chem. 1976, 15, 408. Wagner, F.; Morella, M. T.; d'Annello, M. J.; Wang, A. H. J.; Barefield, E. K. J. Am. Chem. Soc. 1974, 96, 2625.